
e

.j "1 _

A Method for Tailoring the Information
Content of a Software Process Model

m

0

I

Z

....._- 0

.Z_j

-_

>

_ : Z e-

At,..

--_C O

_C_O

- t •
¢¢ :_ .j

o3
u!f_

.,.
U_-<

vO

Z_

M

= .

m _

z

=

Sharon Perkins
University of Houston-Clear Lake

Mark B. Arend
University of Houston-Clear Lake

June 1990

Cooperative Agreement NCC 9-16
Research Activity SE.8

NASA Johnson Space Center
Engineering Directorate

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

IIIII

- T.E.C.H.N.I.C.A .L R.E.P.O.R.T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS, Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

A Method for Tailoring the
Information Content of a software

Process Model

n

w

i

m

m

i

m

in

w

Preface

w

w

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by Dr. Sharon Perkins, Associate Professor of

Applied Science at the University of Houston-Clear Lake, and Mark B. Arend, of

UHCL. Dr. Perkins also served as RICIS technical representative for this activity.

Funding has been provided by the Engineering Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Dave Howes, Information Systems Manager, Engineering Directorate,

NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

u

4

w

L__

liw

lp

Inw

Nero

A Method for Tailoring the Information Content of a

Software Process Model

Dr. Sharon Perkins

University of Houston, Clear Lake

Mark B. Arend
839 Walbrook Dr.

Houston, TX 77062

ABSTRACT

This paper will define the framework of a general method for selecting a necessary and sufficient subset of a

general software life cycle's information products, to support new software development projects. Procedures for

characterizing problem domains in general and mapping to a tailored set of life cycle processes and products will

be given. An overview of the method is shown using the following steps:

1. During the problem concept definition phase, perform standardized interviews and dialogs between devel-

oper and user, and between developer and customer.

2. Generate a quality needs profile of the software to be developed, based on information gathered in step 1.

3. Translate the quality needs profile into a profile of quality criteria that must be met by the software to

satisfy the quality needs.

4. Map the quality criteria to a set of accepted processes and products for achieving each criterion.

5. Select the information products which match or support the accepted processes and product of step 4.

6. Select the design methodology which produces the information products selected in step 5.

This paper will address every step, bl]t will not attempt to generate a full-up methodology. A few of the more

popular process models and design methodologies known today will be examined for their information content.

TERMINOLOGY NOTES

The terms "software process model" and "life cycle" will be used interchangeably. The term "user" will always

mean "customer and user".

w

L_

INTRODUCTION

The complete set of information products defined for common software process models and development method-

ologies is often too large for certain development efforts. In many cases, a subset of information products and the

activities that produce them will suffice to administer the development of a software product. T_e act of selecting

appropriate information products and activities to support the development effort is called "tailoring" the life cycle

or development methodology. This tailoring process is currently an ad hoc method performed by managers and

developers, in early meetings with the customer and user, as they begin to define some sort of Software Manage-

ment or Development Plan. This paper explores a more formalized tailoring method to assist in the definition of

such plans. It is hoped that such a formalization will both speed the process and help ensure the selection of a

necessary and sufficient subset of information products (and by implication, the activities which produce them).

The comei'stone of this tailoring method uses Software Quality Assurance (SQA) techniques. Traditionally, SQA

has dealt with the detection and prevention of defective software. New ideas in the field of SQA are concentrating

on beginning the function much earlier in the life cycle, as early as problem concept and initial requirements

definition. It is hoped that SQA principles will assist the user and developer in creating complete, consistent and

This paper developed under NASA cooperatlve
agreement NCC-9-16, through the RICIS office of
the University of Houston. Clear Lake. April 1990.

Copyrlght 1990, Mark B. Arend. Permission to copy Is granted
provQdedthat the copies are not made or dlstrlbuted for direct
commercial advantage.

A Method for Tailoring the Information Content of a Software Process Mode/

testable requirements. This assistance offers guidelines up front when we're scrambling to put some sensible words

on paper.

I believe that two quotes [5], [21] can illustrate the idea of "engineering in" quality to a software product.

I You can't achieve Quality... Iunless you specify it!

Quality must be defined as conformance /
to requ!rements, not as "goodness" |

USING SQA TECHNIQUES TO SPECIFY QUALITY

Oualitv Factors

This is a common SQA term. Quality Factors are characteristics which a software product exhibits that reflect the

degree of acceptability of the product to the user. Since we're moving SQA up front, we'll restate this: Quality

Factors are characteristics which the user requires the software to exhibit in order to reflect the best possible

degree of acceptability.

Table 1 shows a list of Quality Factors which has been coming into general use for some time [21]. It was first

proposed at the Rome Air Development Center (RADC) in 1977. I show a slightly expanded list, as it has evolved

somewhat since then [5].

There are more detailed meanings of the quality factors which guide the user & developer in determining how

important each factor is for their application.

Not every project requires all quality factors, which is good, because some quality factors are at conflicting pur-

pose. Shown below is a list of factors whose characteristics cause conflicts of definition.

Quality Factor Conflict Explanation of conflict

Efficiency vs. Integrity Overhead required to control access negates efficiency.

Efficiency vs. Usability Overhead required to ease operations negates efficiency.

Efficiency vs. Maintainability----Optimized code negates maintainability. Moduiarization, instrumentation

and well commented high-level code increases overhead.

Efficiency vs. Testability Optimized code negates testability.

Efficiency vs. Portability Optimized code is dependent on host processor services.

Efficiency vs. Fiexibility Overhead required to support flexibility negates efficiency.

Efficiency vs. Reusability Overhead required to support reusability negates efficiency.

Efficiency vs Interoperability----Overhead required to support interoperability negates efficiency.

Integrity vs. Flexibility Flexibility requires general and flexible data structures, increasing data

security problems.

Integrity vs. Reusability Generality required by reusable software introduces protection problems,-

Integrity vs. Interoperability----Coupled systems allow more avenues of access.

Reusability vs. Reliability ,. Generality required by reusable sohware increases difficulty of providing ==

error tolerance (anomaly management) and accuracy. :

The conflic_ =shown do not mea n that the t_ factors are in strict mutual exclusion -- extra effort may be

expended to address the difficulties of specifying factors in conflict. Note thatefficiency tends to c0nflict=with

w

Ill

m

i

l

w

W

W

m

U

W

I

W

m

m

m

u

2 NASA/UHCL

i

A Method for Tailoring the Information Content of a Software Process Model

t

Oualitv Factor

Correctness,

Efficiency

Expandability

Flexibility

Integrity

Interoperability

Maintainability

Manageability

Portability

Usability

Reliability

Reusability

Safety

Survivability

Meaning of factor in context of user needs for software t_roduct

Conformance of software design and implementation to stated require-

ments.

Economy of resources needed to provide the required functionality.

Ease of maintaining the software to meet new functional or perform-

ance requirements.

.Ease of maintaining the software to work in environments other than

originally required.

.Security against unauthorized access to programs and data.

Ease of coupling the software with software in other systems or applica-
tions.

•Ease of finding and fixing errors.

•Ease of administrating development, maintenance and operation of the

software.

.Ease of maintaining the software to execute on a processor or operating

system other than that originally required.

Ease of learning & using the software, and of preparing input & inter-

preting output.

•The rate of failures in the software that render it unusable.

Suitability of software modules for use in other applications.

Protection against loss of life or liability or damage to property.

Continuity of reliable execution in the presence of a system failure.

Verifiability (testability)mEase of verification of functionality against requirements.

w

Table 1 - Quality Factors

many other factors. This is due to the tradeoff with the additional overhead required to satisfy other quality factors

that does not necessarily apply to the algorithm's basic function. Efficiency issues may also be resolved by judi-

cious hardware selection. Note that there is also a reverse-matrix of quality factors (not shown) that tend to

support one another, such as testability and maintainability -- similar sets of criteria support both factors.

So you get the idea of defining quality needs for specific applications. As this process of definition continues, a

profile begins to emerge that describes the proposed software in terms of weighted quality factors.

The Oualitv Profile

I introduce this term to describe the prioritized, weighted list of quality factors that the user & developer define for

their software development effort. The Quality Profile is a "signature" or "fingerprint" of a project's quality needs.

Humphrey [10] offers a common-sense example of what kinds of factors are important for different applications,

based upon the "primary concern" of the application.

Arend 1990a 3

A Method for Tailoring the Information Content of 8 Software Process Model

Primary Concern

a. Effect on human lives

b. Long life Cycle

c. Real time application

d. In-house tool

e. Classified Information

f. Communicating systems

H&h Priority Oualitv Factors

Reliability, Correctness, Testability

Maintainability, Flexibility, Portability

Efficiency, Reliability, Correctness

Efficiency, Reliability, Correctness

Integrity

lnteroperability

J

The High Priority Quality Factors shown for each type of application begin to define that application's quality ,,

profile. The profile of an application of type "a" is given by high degrees of reliability, correctness and testability,

and lower degrees of the remaining factors. In practice, we define a more precise scale of degrees and assign a

particular weight to each factor. The resultant set of quality factor weights defines the quality profile for the i

proposed software.

Another example, more generic, is given by Deutsch [5] to suggest an initial prioritization of Quality Factors by

"software category".

Software Category

m

High Priority Quality Factors

a. Critical Safety, Survivability, Correctness, Maintainability, Efficiency

b. Support Maintainability, Verifiability, lnteroperability, Portability, Usability, Correctness ="

c. I/O Correctness, Interoperability, Maintainability

d. Data Interoperability, Portability, Reusability

e. Computational Correctness, Maintainability

f. Environment Maintainability, Verifiability, Correctness, Interoperability, Portability, Reusabil- _

ity, Efficiency, Integrity =s

g. MMI Integrity, Usability =

h. Documentation Correctness, Maintainability

i. Design Expandability, Flexibility, Interoperability, Maintainability, Portability, Reusabil-

ity, Verifiability

These two examples offer starting points for the development of a Quality Profile. Many applications will exhibit

multipleconcerns or cover severalcategories.Itisthe job of the user & developer to define the Quality Profilefor m

the specificapplication.

Defining the Oualitv Profile
11

Deutsch [5] suggests a metric for ranking or weighting qualityfactors.

Level of quality rcquirgd What techniques should be used to enxure a qualltv factor of this rank

E Excellent Exceptional techniques =.,

G Good Better than average techniques

A Average Normal corporate practices

NI Not an Issue No specialtechniques i

He then extends the metric into the realm of cost and schedule prediction, using Jensen and COCOMO model

relative cost and relative schedule analysis factors. Cost and schedule prediction will not be pursued further here.
W

Latter day SQA ks also developing standardized means by which the user and developer discuss and come to an

agreement of these factors for each application. These means often take the form of questionnaires that prompt

the user to evaluate all needs for quality.

Oualitv Criteria

This is a common SQA term. Quality Criteria are detailed subcharacterkstics which the software exhibits that

reflect the degree to which the Quality Factors are present. In other words, the planned presence of high-level

quality factors implies the presence of a detailed set of quality criteria.

w

4 NASA/UHCL

W

A Method for Tailoring the Information Content of a Software Process Model

The Quality Factors are user-oriented; they are designed to map easily to a user's needs for the proposed soft-

ware. The QuaLity Criteria are more software-oriented; they are designed to map easily to characteristics that may

be evaluated by direct testing of the software. The relationship between quality factors and quality criteria is

analogous to that between the two common stages of requirements definition. The analogy does not apply to the

amount of effort needed to go from the early phase to the later -- Quality Factors may be translated immediately

to Quality Criteria. Table 2 shows a list of Quality Criteria [5], [21].

w

m

Oualitv Criterion

Accuracy

Anomaly Mgmt

Augmentability

Autonomy

Commonality

Meaning of criterion in context of software product

•Achievement of required precision in calculations and outputs

Behavior for recovery from failures

Maintenance effort required to expand upon functions and data

•Degree of decoupling from execution environment

Use of standards to match "look and feel" of similar applications

Communicativeness_Appropriateness of inputs and outputs

Completeness .Degree to which all software is necessary and sufficient

Conciseness .Amount of code used to implement algorithm

Consistency Use of standards to achieve uniformity within software

Distributivity .Physical (device) separation of function and data (addresses backup)

Document Quality .Access to complete, understandable information

Communication Efficiency-Usage of communication resources

Processing Efficiency_Usage of processing resources

Storage Efficiency Usage of storage resources

Functional Scope .Range of applicability of software product's functions

Generality Range of applicability of software's internal units

Independence Degree of decoupling from support environment

Instrumentation Amount of code devoted to usage measurement or error identification

Modularity Cohesion & Coupling of software's modules (design & code)

Operability Ease of operating the software

Safety Management--Degree to which the design addresses hazard avoidance

Self-Descriptiveness--Understandability of design & code

Simplicity Degree to which algorithms map to the problem they solve

Support Functionality that addresses the administration of maintena.nce

System Accessibility---------Controlled access to functions, data and instructions

System Compatibillty--Use of standards to match interfaces with hardware & communications

Traceability Ease of finding links between requirements, design and code

Training Provisions to help users learn the operation of the software

Virtuality Separation of logical implementation from physical component

Visibility Objectivity of evidence of correct functioning -- ease of test verification

Table 2 - Quality Criteria

Mavvin20ualitv Factors to Oualitv Criteria

There is a direct translation from each Quality Factor to a subset of Quality Criteria which support the factor. The

sets of criteria that support different factors may be disjoint or may intersect. Some criteria exhibit conflicts similar

to those examined for quality factors. Table 3 shows a translation between Quality Factors and Quality Criteria

that shows how the criteria support and influence the factors, either positively or negatively. The traditional

Arend 1990a 5

A Method for Tailoring the Information Content of a Software Process Model

Quality Factors Correctness Inte

Efficiency

Quality Criteria

Accuracy

Anomaly Mgmt

Augmentability

Autonomy

Commonality

Communicativeness

Completeness

Conciseness

Consistency

Distributivity

Document Quality

Communication Efficiency

Proccesing Efficiency

Storage Efficiency

Functional Scope

Generality

Independence
Instrumentation

Modularity

Operability

Safety Mgmt

Self-Descriptiveness

÷ -

-- ++

usability

Maintaianability | ,_
M'anageabilit31 Survivability

y Portability Usability

Integrity Ve rifia__b ility

+

+ +

- ++

- +

++

+ +

++ +

+

++

++

++

++

++

++

,=

+

÷

ww

_m

+

+

+

÷

+

+÷

++

++

++

+ +

+ ÷ +

+ +

+

+

+

+ +

÷

+÷

++

÷

-- ÷ ÷÷ - ÷

- ÷ ÷÷ ++

| + , + +

- [+ ++ ÷+ ÷÷ ++ +÷ + ++
1

- + ++

÷÷

- ÷+ +÷ ÷÷ ÷ +÷ ++

Simplicity+ . + + ++ ++ + ++ ++ ++

Support ++ + ++ ++

System Access Control - - ++ -- + +

System Compatibility

..Traceability ++ + [I +

Training l

Virtuality + !

Visibility ! ÷

÷ ÷+

+ ++

÷

+÷

Table 3 - Quality Factors <=> Quality Criteria Map

direction of translation is from criteria to factor -- the SQA or test team measures the criteria from the software,

and reports on what quality factors the software thus exhibits. Our method will begin with the user definition of

quality factors, and develop a set of criteria that the software must meet in order to satisfy our quality needs.

This table is merged from two different authors' approach to the factor/criteria map [5], [21]. Their perspectives

overlap to a high degree, but each one shows a few more, different criteria than the other. I have included them

all here in order to work with the most complete universe of factors and criteria possible. Detailed examination of

the authors' text reveals that while some factors and criteria sound very similar, they actually do describe different

characteristics of the software.

6 NASA/UHCL

--=

Ill

m

m

m

W

W

IlUl

U

=--

w

A Method for Tailoring the Information Content of a Software Process Model

Symbols are used in the cells of the matrix in Table .3 to indicate the influence a criterion has on various factors.

Another viewpoint is that they indicate which criteria are necessary to support each factor. A plus under a factor

means that the software should be required to exhibit the corresponding criterion, but is subject to trade-off based

on any conflicts that arise. A doubl_ plus means that the criterion is more important, and less subject to trade-off.

A negative under a factor means that it would be wise not to require the software to exhibit the corresponding

criterion, but is subject to trade-off based on the influence of other factors. A double negative means that extra

effort must be expended to require the software to exhibit the corresponding criterion.

The assignment of pluses and minuses is a subjective process, but the concept has been refined over time by

various authors [5], [8], [10], [21].

SOFTWARE PROCESS MODELS

"The software process is the technical and management framework established for applying tools, methods and

people to the software task" [10].

There are a handful of well-defined "process models" or "life-cycles" in the industry today. They each describe a

set of activities and products designed to support the successful creation of a software product. The most widely

used model is called the Waterfall model. Other models are coming into use that attempt to address the shortcom-

ings of the Waterfall, but they tend to generate very similar information products. Appendix D offers a brief

description of other common process models.

The Waterfall model is characterized by a linear set of activities and products such that each activity uses the

output of previous activities as its input. Here we list general names of the primary technical products of a waterfall

model.

Activity (phase) Major products generated by activity (t)hase)

Concept Definition Feasibility Study, Concept document

User Req. Definition_Level-A Requirements Document, Software Management Plan, System Interface

Control Document (ICD)

System Req. Definition_Level-B Requirements Document, Subsystem ICDs

System Design System Design Document, System Test Plan

Implementation Software, Test Case Document

Testing. Test Report

Maintenance , Upgraded Software, Maintenance Report

Note that the waterfall model itself does not really define details of the information products that are to be

produced. Most users of the waterfall model recommend a larger set of documentation; these recommendations

are usually laid out in a documentation standard.

SOFTWARE DOCUMENTATION STANDARDS

A Documentation Standard defines all information products that may be generated to support development of the

software product. Usually. a documentation standard is packaged with a life-cycle standard. Two common stan-

dards are:

SMAP Information System Life Cycle & Documentation Standards [15]

DOD-STD-2167A [6]

For this study, we will use the document set defined by NASA's Information System Life Cycle Documentation

Standard -- Appendix A shows the complete list. Our tailoring method will address which of these products are

most important for a given set of quality factors.

ANALYSIS & DESIGN METHODOLOGIES

Within the framework of the software process model, some method must be used to define the content of each

product. Formalized methodologies address the complex definit!on of the requirements and design products of the

Arend 1990a 7

A Method for Tailoring the Information Content of a Software Process Mode/

software process. There are many different methodologies to choose from for use within any software process. The
information content of the requirements document, then, may vary according to the technique used to produce it.

For example, one may choose to specify system requirements using:

a. a simple textual notation developed in an ad hoc manner, or from lessons learned during prototyping.

b. a functional decomposition hierarchy of diagrams, capturing the requirements in processes and data flows.

c. an information model, capturing the requirements in objects, relations and behavior diagrams.

d. a viewpoint/behavior model, capturing requirements in data/action maps and state diagrams.

e. a hybrid of the above techniques, or other techniques.

Appendix C gives a brief overview of some of the more popular methodologies in use today, and lists all the

specific products they offer. Our tailoring method may eventually be used to select a meaningful subset of these

products; the current version of the paper will not explore this.

TAILORING INFORMATION PRODUCTS

The hierarchy of SMAP-recommended information products for the software development effort is shown in

Figure 1.

Software Process Model

Concept Phase Requirements Phase Design Phase Implementation Phase -O'ther
-Activities -Activities -Activities -Activities Phases

-Information Products -Infgrmation Products -Information Products -Information Products

-Management plan -Development plan [-Eng & Integ plan _-Software components
-Acquisition plan -Test plan I-Support plan [-Maintenance manual
-RFP -IV&V plan [-Architectural spec \ _-Unit test document

-WBS -SE&O plan I-Detailed spec _ \ [-Unit test reports
-Dev. contract -Requirements spec _ _-Integration test doc \ \ -Customer inspect report
-Config Mgmt plan -Interfaces \'Prototyping reports \ \
-Risk mgmt plan -User's guide \ \ \
:-Assurance plan -Acceptance test doc \ \ \
-Concept spec "-"-'x -Discrepancy reports _ \ \
-Assurance specs \ -Eng. change proposals \ \ \

-Lessons learned doc _ _k \ \
-Assurance reports x__ _ • ,
-Phase transitionre-

view reports Jlt is the content of these documents that is addressed by the various Isoftware development methodologies. The tailoring method will also I
address recommendations for the contents of these documents. I

Figure 1 - SMAP Information Product Overview

Each Information Product shown will be analyzed to determine which quality criteria it best supports. The same

analysis will be applied to the information products generated by various development methodologies. At this

point, we will be ready to translate a set of 15 user defined Quality Factors Into a recommended set of information

products.

Tailoring will proceed on three levels:

1. A subset of the document universe will be selected for the specific quality profile. Example: recommend
=

producing a Software Requirements Spec, among other documents.

2. For each selected information product, a subset of it's maximum table of contents will be selected. Exam-

ple: recommend defining a Data Definition section in the Software Requirements Spec, among other

sections.

3. For each recommendation from the table of contents, a set of suggestions will be given to characterize the

nature of the information that should appear therein. Example: make the following recommendations for

NASA/UHCL

i

w

J

n

g

t

!

m

m
u

W

i

!e

lip

elm

ibm

ml I

w

A Method for Tailoring the Information Content of 8 Software Process Model

the contents of the Data Definition section: minimize the number of different data representations, mini-

mize number of data conversions, use dynamic memory allocation, pack all data items, etc.

The user/developer then examine the lists of recommendations, and decide whether they make sense in the

context of the project. There may still be some manual tailoring to do, but the bulk of the job will have been

performed by this method.

FUTURE WORK

The length of this study was not great enough to develop the full translation from Quality Criteria to Information

Products. As a starting point, the requirements volume contents in Appendix B have been mapped to quality

criteria. Areas that need more work are:

1. Develop the complete translation between Quality Criteria and all information products listed in the Ap-

pendices. This will include not only the selection of specific products, but recommendations for the char-

acter of that product's content.

2. Extend the tailoring method to include the tailoring of Management and Assurance activity products, as

well as technical development products.

3. Define a weighting scheme for ranlong Quality Factors that is consistent with Software Process Model and

Design Methodology characteristics.

4. Analyze the list of information products generated by the outstanding process models in use today, and

annotate with descriptions of the information content of each product. These descriptions should be

compatible with the weighting scheme defined in area 3.

Appendix A

LIFE CYCLE PHASES & INFORMATION PRODUCTS:

NASA'S SOFTWARE ACOUISITION STANDARD

This appendix lists the life cycle phases and information products for NASA's Software Acquisition Life Cycle as

defined by the agency's Software Management and Assurance Program (SMAP). This set of documentation will

serve as the universe from which a tailored set will be extracted.

The SMAP plan for volume roll-out describes a mechanism which allows the manager/developer to create infor-

mation products as sections of one volume, or as separate individual volumes, or as a combination, depending

upon the required complexity and management of the particular information product. The tailoring method will

select a subset of these information products by recommending the "complexity" of each information product. It

is recognized that there are considerations for tailoring other than the quality profile, especially as apply to the

Management Plan. Initial tailoring guidelines will focus on the Product Specification, then the Assurance Specifi-

cation.

Life Cycle Phases

Concept Definition Phase (CD)

Requirements Definition Phase (Req): User requirements, System Requirements

Design Phase: Software Architectural Design (SAD), Software Detailed Design (SDD)

Implementation Phase (Impl)

Integration and Test Phase: Integration & Unit Test (I&T), Acceptance Test (AT)

Maintenance, or Sustaining Engineering & Operations (SE&O)

Infgrmation Products: Data Item Descrinfions (DID_

Management Activity Products: the Management Plan

Product Phase(s) during which product is _enerated. including updates.

Arend 1990a 9

A Method for Tailoring the Information Content of a Software Process Model ..

10

Component Management Plan

Component Acouisition Plan

Request for Prooosal

Work Breakdown Structure

Software Develooment Contract

Configuration Management Plan

l?isk Management Plan

Assurance Plan

Component Develooment Plan

Test Plan

Validation & Verification Plan

Sustaining Engineering & Operations Plan

Engineering and Integration Plan

Product Support Plan

CD I&T

CD ..,

CD

CD

CD

CD I_

CD

CO Rea

ReQ

SAD

Rea SAD

ReQ SAD

R¢_

SE&O

SAD SDD Imp[

SAD

Technical (Develoomentl Activity Products: the Software Product Suecifh:atiom

I&T

Phase(s) during which product is generated, including updates.

CD

SDD

SDD Imol

Imt)l

Imol

SE&O

SE&O

..SE&O

Imol I&T AT SE&O

SE&O

SE&O

lmnl I&T AT _ SE&O

Imol SE&O

I&T AT SE&O =

product ..,

Conceot Document

_uirements S__c (Level-A1 CD

Software Requirements Soec (Level-B) Rea

External Interface Reouirements Rea

User's Guide R¢_

Software Architectural Design Spec SAD

Software Detailed Design Soec

Software Component

Software Maintenance Manual

Version Description Document_

Assurance Actlvitv Products: the Assurance Soec]iqcat|on _= _= :

Product

p,ssurance Soecs_ - .__

Acceotance Test Document

Integration Test Document

Unit Test Document

W

W

U

=--

J

u

U

U

wlm

Phase(s) durin_ which product is generated, includine updates.

CD AT SE&O

Req SAD I&T AT i-

_ SAD I&T

Mana_enlent Control & Status Re0ortinl Aetl¥itv Products

ProducL Phatse(s) during which product is generated, including undates.
SAD SDD Imnl

SAD SDD Imnl

I&T AT

I&T AT

I&T _ AT SE&O

I&T AT SE&O

SAD SDD Imnl

SAD SDD Imol

Req SAD SDD Imol

lmol

SAD

I&T

SE;_O =

AT

I&T . AT

Lessons-Learned Document CD Req

Assurance Reports CD Req

Phase Transition Review Reoorts CD Rea

Discrepanc_ Re oorts - - - Req

Engineering Chan__e Proposals

NASA/UHCI..

Prototv_in_ Reports

Unit Test Retx3rts

Customer Inspection Re tmrts

Integration Test. Report_

Certification Reoorts

Performance)Metrics Reins

Impl

I

W

--= i

Ill

W

r._

ii

J

A Method for Tailoring the Information Content of a Software Process Model

:

w,

Appendix B

INFORMATION CONTENT of the NASA-SMAP STAN-

DARD SOFTWARE PRODUCT SPECIFICATION

This appendix lists the full table of contents for SMAP's Software Product Specification (SMAP-DID-P000-SW).

This document package contains a Software Concept Document, a Software Requirements Spec, a Software Ar-

chitectural Design Spec, a Software Detailed Design Spec, a delivery Version Description, a User's Manual and a

Maintenance Manual. (from [15]). The contents have been extended to include a more complete list of informa-

tion items that may be useful (from [1]). The extended items are italicized.

An initial pass at mapping document sections to quality criteria has been performed for the Requirements Volume

-- the map uses abbreviations shown in the key below, and should be read "backwards" for each criterion. In

other words, the map is to be used by selecting those document sections that show a reference to each criterion

that is specified by the quality profile.

Ac: Accuracy DQ: Document Quality Sf: Safety Management

AM: Anomaly Mgmt EC: Communication Efficiency Sd: Self-descriptiveness

Ag: Augmentability EP: Processing Efficiency Sin: Simplicity

At: Autonomy ES: Storage Efficiency Sp: Support

Cm: Commonality FS: Functional Scope SA: System Accessibility

Cc: Communicativeness Gn: Generality SC: System Compatibility

Cp: Completeness Ip: Independence Tc: Traceability

Cn: Conciseness Is: InstrumentaUon Tr: Training

Cs: Consistency Md: Modularity Vr: Virtuality

Ds: DistribuUvity Op: Operability Vs: Visibility

Key: Quality Criteria AbbreviaUons

The Introduction and Related DocumentaUon sections are recommended in their entirety for every software de-

velopment effort. Content of the volumes following will be addressed by the tailoring method. (At present, only

the Requirements Volume is addressed).

Introduction

Identification of Volume

Scope of Volume
Purpose and ObjecUves of Volume
Volume Status and Schedule

Volume Organization and Roll--Out

Related Documentation

Parent Documents

Applicable Documents
Information Documents

Concept Volume
Definition of Software

Purpose and Scope

Goals and ObjecUves

DescripUon
Policies

Anticipated Uses of System

Arend 1990a 11

A Method for Tailoring the Information Content of a Software Process Model

Optional Configurations
User Definition

Overview of the User Organization

Logical organization

Physical organization
Temporal organization

reporting cycles
scheduled events

Information flow organization

Capabilities and Characteristics

Sample Operational Scenarios

Anticipated Operational Strategy

System ownership

System administration

operational control

modification policy

change support
User administration

departments
skill levels

Funding strategy
Currently Used Procedu*res

Requirements Volume

Requirements Approach and Tradeoffs DQ, Tc
Design Standards to be used ... Cm, Cs, Md, SC

World Model (Information model) type A Ag, Co, Md. Sd, Vr

Entity-Relation summary (Data Requirements)
Entities: description,-attributes, class size

Attributes: description, values, defaults, constraints,

class size, retention/archive requirements

Relationships: description, size, components, constraints

Individuals (instantiations of entities)

Worm Model (Information model) type B Ag, Cc, Md, Sd, Vr

Objects: description, allowed operations, class size

Allowed Operations: constructors, interrogators,

iterators, etc.

Messages: sent, received

External Interface Requirements Co, EC, SC

Operational Resources & Resource Limitations EC, EP, ES, Vr

Requirements Specification
Process and Data Requirements

Function Input data & Source
Function Transactions and Algorithms

Function Output data & Destination

Function Triggering mechanisms & conditions
Function Termination mechanisms & conditions

Function Expected demand
Data Definition

Data Relationships ... Ac, Ag, At

Data Protection requirements Op

Data Validity check requirements Ac, AM, Gn. ip, Op, $A

Data Parameterization requirements Ac, Ag. Gn, Sd, Vr

Data Format or Implementation Restrictions Ac. Ag, At

System Behavior Requirements

Ac, Ag, AM,: Cc,"Crn.Gn, SC, Sd, Tc, VS

AC, Ag, AM, Cp, Cs, EP, FS, Gn, Md

Ac, Ag, AM, Cc, Cm, Gn, SC, Sd, Tc, Vs

AM, Cm, EP

AM, Cm, EP
EP

Ac, Ag, At

12 NASA/UHCL

w

W

W

W

g

J

m

m

tim '

m
m

r
u

Ill

I

L

=

A Method for Tailoring the Information Content of a Software Process Model

Phases & Modes

System Actions
Performance and Quality Engineering Requirements

Timing & Sizing requirements
Sequencing & event timing requirements

Throughput & capacity requirements

,Ac, Ag, AM, Sf
Ag, AM, Cm, Sf

EC, EP, ES

•EC, EP

.EC, EP

Error Detection, Isolation, Recovery requirements_Ac, AM, Ds, Is, Sf

Quality Engineering requirements ALL

Quality factors required

Safety Requirements

Security and Privacy Requirements

Access requirements
to functions
to data

to code

Legal requirements

Audit requirements

Other policy-based requirements

Implementation Constraints

Site Adaptation,

Design Goals

Human Factors Requirements

User type definition

level of computer sophistication

technical competence required

Physical constraints

response time

special physical limitations�requirements

On-line help requirements

Robustness requirements

Failure message & diagnostic requirements

Input�Output convenience requirements

defaults

formats

Traceability to Parent's Design

Partitioning for Phased Delivery

Design Volume

Architectural Design
Design Approach and Tradeoffs

Architectural Design Description

External Interface Design
Requirements Allocation and Traceability

Partitioning for Incremental Development

Detailed Design

Detailed Design Approach and Tradeoffs

Detailed Design Description

External Interface Detailed Design

Coding and Implementation Notes
Firmware Support Manual

Version Description Volume

Product Description

Inventory and Product
Materials Released

Product Content

AM, Sf, SA

Cm, Sf, SA

Cm, Sf, SA

Sf, SA
Sf

_Vs

Ag, Ds, Ip

Ag, At, Gn
Cn, Cs, Gn, Sm

Op, Cc

Op, CC

Cm, Op

Cm, Op

Op

AM, Gn, Sf, SA

AM, Cm, Cc, Gn, Is, Op

Cm, Cc, Is, Op

Tc, Sm

DQ, Tc, Vs

Arend 1990a 13

--7

A Method for Tailoring the Information Content of a Software Process Model "_

Change Status
Installed Changes
Waivers

Possible Problems and Known Errors

User Documentation Volume

User's Guide

Overview of Purpose and Function

Installation and Initialization

Startup and Termination

Functions and their Operation
Error and Warning Messages

Recovery Steps
User's Training Materials

Maintenance Manual Volume

Implementation Details
Modification Aids

Code Adaptation
Standards

Abbreviations and Acronyms

Glossary

Notes

Appendices

DESIGN ME ODOLOGIES and their INFORMA-

TION PRODUCTS

This appendix lists information products generated by the more popular analysis & design methodologies of the

day (compiled from [3], [9]). These products make up a portionof the contents of the Software Product $pee as

listed in Appendix A and Appendix B. It is hoped to extend the tailoring method to recommend an appropriate

set of design methodology information products based on the quality profile.

Functional Decomposition

Structured Desiln (SD_ _ ConstantinelMverqlYourdon

This is the traditional data flow diagram methodology that has been in use since the early seventies. It's main

products are a hierarchical set of data flow diagrams, process specifications and a data dictionary. State
transition diagrams may also be used when deemed necessary by the analyst.

Real T!me_Stru__ctu_rL,d Analys!$ & Desilen (R'Ii"SAD'I

This methodology is similar to $D, but includes the analysis and design of control flow between processes.
State transition diagra_ decision tables and process activation tables are used with more regularity.

Ob_ig_t Oriented Design (OOD)

The objectsdefinedinB0och'sOOD have associatedattributesand allowedoperadom. They use the e_)rtcepts
ofvisibility,classand inheritance,and theycommunicate witheach otherviamessagepassing.One ofBooch's
goalsindesigningthismethodologywas to be compatiblewiththe Ada language,and the objectsmap wellto
Ada constructs.

J

m

II

m

g

J

m

llll

g

m

m

14 NASA/UHCL
L:--

WIU

A Method for Tailoring the Information Content of a Software Process Model

GOOD (General OOD) -- Seidewitz

The objects defined in this OOD have associated attributes only, They are tied to one another not by message
passing, but by defined relationships. This is an attempt to model the real world more closely, and applies well
to non-real time applications.

Other Methodolo2ies

Jackson Structured Desi2n (JSD) -- Jackson

This unique approach was an early contender on the requirements modeling scene, and is still going strong. As
industry has developed the terms, we discover that JSD is a natural hybrid of Object Oriented and Functional
Decomposition methodologies. JSD has its own set of information products which do not match 100% any of
the traditional products in the map below, but I show what traditional products are most like those produced
by JSD, rather than specifying and defining new product categories.

Ada-based Desien Anoroach for Real Time Systems (ADARTS) -- Gomaa

This methodology is an Ada-based version of DARTS; it builds upon the SCR module structuring criteria, the
Booth object structuring criteria, and the DARTS task structuring criteria to generate maintainable and reus-
able software components. It offers consideration of the concurrent nature of real-time systems. The analysis
and design diagrams use the "Booth-gram" Ada notation.

Software Cost Reduction (SCR) -- Parnas

This real-time oriented methodology concentrates on the modules that will make up the software product, an
information-hiding hierarchy into which they fail, and the interfaces which they use among themselves. With-
out trying, it is almost object oriented. The methodology offers strong support for software reuse.

Software Productivity Consortium Methodology (SPCM) -- Gomaa

This methodology is based on SCR. Its primary areas of focus are the inclusion of rapid prototyping techniques
and the production of reusable software.

Information Products of the Methodolo2ies

Product

Context Diagram

Data Flow Diagrams

Control Flow Diagrams

Methodoloaies which sunport generation of product

SD Rtsad

SD Rt_ad GOOD JSD Adarts

SD Rtsad

Control Transformations (State Transitions_ SD

Mini-S_tmcs

Data Dictionary

Structure Charts

Hardware Dia__ram

Class Structure Dia?ram

Architecture Diatram

Ada Package Struts

Object Dia__ram

Entity-Relation Di. o_rrt¢

Process Definitions

Obiect Composition

Obiect Descrit_tions

Ta_k Structure Specs

Module Guide

Module Interface Stmcs

"Uses" Structure

Module Internal Design Stmc

Rt¢ad OOD GOOD JSD Adarts SCR SPCM

SD Rmad

SD_ _ Rtsad JSD

SD Rt_ad JSD Adarts

Rt_ad

OOD

OOD

OOD

OOD

OOD GOOD, JSD

GOOD

GOOD

GOOD

GOOD

OOD GOOD

SPCM

Adarts SCR SPCM

Adarts SCR SPCM

Adarts SCR SPCM

Adarts SCR SPCM

SCR SPCM

Arend 1990a 15

A Method for Tailoring the Information Content of a Software Process Model

Subset Spec SCR SPCM

Appendix D

OTHER SOFTWARE PROCESS MODELS

A sampling of Software Process Models other than the Waterfall Model are briefly described here. Recall that

their associated information products are very similar to those described in Appendix A.

A management oriented model. Activities and products are almost identical to those of the waterfall model, but

are interspersed with regular prototyping and risk analyses efforts to guide the process.

]_apid Prototvp_ in_

This prototyping model covers the requirements definition phases of the waterfall or other similar model. It is

generally recommended for never-before-attempted solutions, or when the user & developer deem areas of the

problem concept to be technologically difficult.

A partial implementation of the system is constructed from informal requirements, usually of poorly understood

areas. Users exercise of the prototype to better understand and define requirements. The prototype must then be

discarded, and system design is begun from the requirements.

It iS important to avoid temptations to keepandbui!d upon the prototype, because the very nature of rapid
prototyping causes generatiOn of code that is inefficient, unsafe, unreliable' unmaintainable, etc. [f, during devel-

opment of the prototype, algorithms or designs are discovered that are particularly efficient, safe, reliable, main-

tainable, etc, they should be documented for consideration during the "real" design.

Evolutionary Prototypin 2

This prototyping model iS also recommended for technologically difficult problems, but covers a larger area of the

life cycle, it is hoped that the evolutionary prototyping efforts will help guide and speed the requirements defini-

tion, system design and implementation phases.

A part:tai:]rnp[ementation o:f_e system is constructed from par/ially known, well:defined requirements, usually=of

well understood areas. Users exercise the prototype to better understand and define remaining requirements. The

prototype forms a set of baseline software which will be built upon to complete the deliverable versions. At this

point, the model may u-ansifion to the Iterative Enha/ic-e-ment model. -

Development of an evolutionary prototype begins with well defined requirements. It takes longer than rapid

prototyping, because good software engineering practices must be used to develop code that will eventually be part

of the working product.

Iterative Enhancement a.k.a. Incremental Develooment

This model is recommended for applications that have a basic, well understood core set of functions. The model is

characterized by many releases of new versions which add new functionality. Many market-penetration schemes

will use this model to get a product into the marketplace and generating revenue, to pay for later enhancements. A

rather complete set of requirements-_kn0wn up front, and the releases of new functions are--planned in ad-vari_e;

of course, the model is adaptable to new requirements and relies on user feedback to improve the product.

Software Reuse

This model may be used to cover the design portion of the waterfall or other similar model. It's design paradigm

relies mostly on the incorporation of previously proven designs and code into new software products.

16 NASA/UHCI..

m

w

I

u

w

g

H
J

U

l

E

I

g

g

=_

W

m

l

A Method for Tailoring the Information Content of a Software Process Model

Automated Software Synthesis

This is an advanced model that usually requires strict formulation of requirements using a regular grammar specifi-

cation language. This model offers the direct (and hopefully, automatic) transformation of requirements and/or

high level design into code, either algorithmically or using a knowledge based rule set. It is hoped to eliminate the

middle portions of the documentation set, centering around the detailed design.

CASE tools currently exist that support this model to some degree. Typically, they will generate Ada package

specs and the interface portions of package bodies from structure charts.

REFERENCES

[1] Abbot, R., An Integrated Approach to Software Development, John Wiley & Sons, NY 1986.

[2] Basili, V.; Rombach, H., "Tailoring the Software Process to Project Goals and Environments", 9th Interna-

tional Conference on Software Engineering, IEEE Computer Society, Washington, DC 1987.

[3] Davis, A., "A Comparison of Techniques for the Specification of External System Behavior", Communica-

tions of the ACM, 31,9 (September 1988).

[4] Davis, A.; Bersoff, E.; Comer, E., "A Strategy for Comparing Alternative Software Development Life Cycle

Models" IEEE Transactions on Software Engineering, 14,10 (October 1988).

[5] Deutsch, M.; Willis, R., Software Quality Engineering: A Total Technical and Management Approach, Pren-

tice-Hall, Englewood Cliffs, NJ 1988.

[6] DOD-STD-2167A, Military Standard: Defense System Software Development, Department of Defense,
Washington, DC, 1988.

[7] Fox, G-., "Performance Engineering as a Part of the Development Life Cycle for Large-Scale Software

Systems" 11th International Conference on Software Engineering, IEEE Computer Society, Wash-

ington, DC 1989.

[8] Gilb, T., Software Metrics, Winthrop Publishers, Cambridge, 1977.

[9] Gomaa, H.; Kirby, J.; Weiss, D., "Comparison of Software Development Methodologies",Presentation at

Software Productivity Consortium Methodology Workshop, March 1989.

[10] Humphrey, W., Managing the Software Process, Addison-Wesley, Reading, MA 1989.

[I 1] Humphrey, W., "Software Process Modeling: Principles of Entity Process Models" 9th International Confer-

ence on Software Engineering, IEEE Computer Society, Washington, DC 1987.

[12] IEEE, Software Engineering Standards, IEEE Computer Society, Washington, DC 1987.

[13] Jackson, M., System Development, Prentice-Hall, Englewood Cliffs, NJ 1983.

[14] Krasner, H.; Pore, M., "A Software Process Management Approach to Quality and Productivity",

Lockheed Software Technology Center, 1989.

[15] NASA, Software Management and Assurance Program (SMAP) Information System Life Cycle and Docu-

mentation Standards Release 4.3, NASA Office of Safety, Reliability, Maintainability and Quality

Assurance, 1989.

[16] Poore, J., "Derivation of Local Software Quality Metrics (Software Quality Circles)" Software Practice and

Experience, 18,11 (November 1988).

[17] Pressman, R., Making Software Engineering Happen: A Guide for Instituting the Technology, Prentice-Hall,

Englewood Cliffs, NJ 1988.

Arend 1990a 17

A Method for Tailoring the Information Content of a Software Process Mode/ w

[18] Pressman, R., Software Engineering: A Practitioner's Approach, McGraw-Hill, NY 1982.

[19] Rowen, R., "Software Project Management Under Incomplete and Ambiguous Specifications" IEEE Trans-

actions on Engineering Management, 37,1 (February 1990).

[20] Tully, C., Proceedings, 4th International Software Process Workshop, ACM Press, NY 1989.

[21] Vincent, J.; Waters, A.; Sinclair, J., Software Quality Assurance, Volume I: Practice and Implementation,

Prentice-Hall, Englewood Cliffs, NJ 1988.

l

J

i

i

i

g

W

II

iI

J

m

g

w

i

i

18 NASA/UHCL

